Smooth Muscle–Selective Nuclear Factor‐κB Inhibition Reduces Phosphate‐Induced Arterial Medial Calcification in Mice With Chronic Kidney Disease

نویسندگان

  • Tadashi Yoshida
  • Maho Yamashita
  • Chihiro Horimai
  • Matsuhiko Hayashi
چکیده

BACKGROUND Hyperphosphatemia is a major factor promoting the formation of arterial medial calcification in chronic kidney disease (CKD). However, arterial medial calcification begins to occur during the early stages of CKD, when hyperphosphatemia is not yet apparent. It is predicted that other factors also play a role. The aim of the present study was to determine the role of pro-inflammatory nuclear factor-κB (NF-κB) signaling in smooth muscle cells (SMCs) for phosphate-induced arterial medial calcification in CKD mice. METHODS AND RESULTS We first sought to establish a novel mouse model of CKD with arterial medial calcification. CKD was induced in DBA/2 mice by feeding them a low concentration of adenine, and these mice were fed a normal or high-phosphorus diet. Severe calcification was seen in CKD mice fed the high-phosphorus diet, while it was undetectable in CKD mice fed the normal phosphorus diet or control mice fed the high-phosphorus diet. Arterial medial calcification was accompanied by phenotypic switching of SMCs into osteogenic cells. Interestingly, NF-κB inhibitors, tempol and triptolide, both reduced arterial medial calcification in CKD mice fed the high-phosphorus diet. Moreover, formation of arterial medial calcification, as well as SMC phenotypic switching, was also markedly attenuated in transgenic mice, in which the NF-κB activity was inhibited selectively in SMCs. Mechanistic studies revealed that Krüppel-like factor 4 was involved in NF-κB-induced SMC phenotypic switching and calcification. CONCLUSIONS Results of the present studies suggest that the NF-κB signaling in SMCs plays an important role in high phosphate-induced arterial medial calcification in CKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting progressive ankylosis protein homolog expression

Vascular calcification is a major risk factor of cardiovascular mortality, particularly for patients with end-stage renal disease and diabetes. Although chronic inflammation is one of the etiologic factors, the underlying mechanism is not fully understood. To clarify this, we studied how nuclear factor-kappa B (NF-κB) induction, a mediator of inflammation, might promote vascular calcification. ...

متن کامل

Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet

Vascular calcification is common in chronic kidney disease, where cardiovascular mortality remains the leading cause of death. Patients with kidney disease are often prescribed vitamin D receptor agonists (VDRAs) that confer a survival benefit, but the underlying mechanisms remain unclear. Here we tested two VDRAs in a mouse chronic kidney disease model where dietary phosphate loading induced a...

متن کامل

Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells.

Emerging evidence indicates that upregulation of the ER stress-induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell-specific (...

متن کامل

Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2.

OBJECTIVE Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human vascular smooth muscle cells (VSMCs), but its importance in vascular calcification in vivo and the potential role of its homo...

متن کامل

The RANKL/RANK/OPG Signaling Pathway Mediates Medial Arterial Calcification in Diabetic Charcot Neuroarthropathy

OBJECTIVE The receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) signaling pathway (RANKL/RANK/OPG signaling) is implicated in the osteolysis associated with diabetic Charcot neuroarthropathy (CN); however, the links with medial arterial calcification (MAC) seen in people with CN are unclear. This study aimed to investigate the role of RANKL/OPG in MA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017